
Physics H7C Fall 1999 Solutions to Problem Set 10 Derek Kimball

“It’s really quite straightforward, there’s nothing mystical about it.”

- Prof. Eugene D. Commins, U.C. Berkeley, on the subject of the Einstein-
Podolsky-Rosen paradox.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

The average energy of a particle Ē in a harmonic oscillator potential V (x) =
1
2mω2

0x
2 is given by:

Ē =
U

N
, (1)

where U is the total energy of N particles in identical potentials (this is the usual
imaginary ensemble of identical quantum mechanical systems used to calculate
expectation values, etc.). The total energy is given by:

U =
∞∑

n=0

N0Ene
−Enβ =

∞∑
n=0

N0�ω0

(
n+

1
2

)
e−nβ�ω0 , (2)

where β = 1/(kT ) and the total number of particles is:

N =
∞∑

n=0

N0e
−nβ�ω0 . (3)

The average energy is then given by the expression:

U

N
=

∑∞
n=0 N0�ω0ne

−nβ�ω0∑∞
n=0 N0e−nβ�ω0

+
1
2

�ω0. (4)

Cancelling out common factors of N0 and noting that

(n�ω0)e−βn�ω0 = − ∂

∂β
e−βn�ω0 ,

we can simplify Eq. (4) to:

U

N
=

− ∂
∂β

∑∞
n=0 e

−nβ�ω0∑∞
n=0 e

−nβ�ω0
+

1
2

�ω0. (5)

Next we use the fact that for a geometric series

∞∑
n=0

arn =
a

1− r
.

Thus for the average energy, we have:

Ē =
− ∂

∂β

(
1

1−e−β�ω0

)
1

1−e−β�ω0

+
1
2

�ω0. (6)

From which we find:

Ē =
�ω0e

−β�ω0

1− e−β�ω0
+

1
2

�ω0 =
�ω0

e�ω0/kT − 1
+

1
2

�ω0. (7)

This is an expression for the average energy of the particle at any temperature. If
we take the high temperature limit (kT � �ω0), eβ�ω0 ≈ 1 + β�ω0, so

Ē ≈ 1
β
= kT.

Problem 2

Here, we consider the potential 1
2mω2x2 of the harmonic oscillator, where ω is

a constant. We define the operator A ≡ y + iq, where y ≡ x
√

mω/2 and q ≡
p/

√
2mω. Since 〈x〉 and 〈p〉 are physical observables, x† = x and p† = p and

subsequently y† = y and q† = q.

(a)
A† = (y + iq)† = y† − iq† = y − iq

(b)
[
A,A†] = (y + iq)(y − iq)− (y − iq)(y + iq) = [y, y] + [y,−iq] + [iq, y] + [iq,−iq]

We know that y and q commute with themselves, and that

[y, q] = −[q, y].

Employing these results, we find that
[
A,A†] = −2i[y, q].
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From the definition of y and q,

[y, q] =
[
x

√
mω

2
,

p√
2mω

]
=

1
2
[x, p] = i�/2.

From which we conclude:
[
A,A†] = −2i[y, q] = �.

(c)

H =
p2

2m
+

1
2
mω2

Since p2 = 2mωq2 and x2 = 2y2/(mω), we find

H = ω(q2 + y2).

(d),(e) Note that from the definitions of A and A†, we have

y =
A+A†

2

and

q =
A−A†

2i
.

Thus we find that
y2 =

1
4
(
A2 +A†2 +AA† +A†A

)
and

q2 =
1
4
(−A2 −A†2 +AA† +A†A

)
From (c) and the above considerations we have that

H = ω(q2 + y2) =
ω

2
(
AA† +A†A

)
.

By adding and subtracting AA† or A†A where appropriate,

AA† = AA† −A†A+A†A =
[
A,A†] +A†A = � +A†A

and also

A†A = A†A−AA† +AA† =
[
A†, A

]
+AA† = −� +AA†.

These expressions can be used in our above expression for H, and from them we
find

H =
ω

2
(
AA† +A†A

)
= ω

(
A†A+ �/2

)
= ω

(
AA† − �/2

)
.

(f) Since constants commute with anything
[
�/2, A†] = 0. Thus we get:

[H, A†] = [
ωAA†, A†] = ω

(
AA†A† −A†AA†) = ω

[
A,A†]A† = �ωA†.

(g) Similarly,

[H, A] =
[
ωAA†, A

]
= ω

(
AA†A−AAA†) = ωA

[
A†, A

]
= −�ωA.

Problem 3

Consider the angular momentum operator L ≡ r × p = (�/i)r ×∇. For example,
Lx ≡ (�/i)

(
y(∂/∂z)− z(∂/∂y)

)
. Define L± ≡ Lx ± iLy.

(a)

[Lx, Ly] = [ypz − zpy, zpx − xpz] = [ypz, zpx] + [zpy, xpz]− [zpy, zpx]− [ypz, xpz]
(8)

Recall that in figuring out these commutation relations, it often helps to think of
the commutators as operators acting on functions. This is especially helpful in
dealing with commutators involving derivatives. We’ll look at each of the terms in
the above expression individually:

[ypz, zpx] = −�
2y

∂

∂z
z
∂

∂x
+ �

2z
∂

∂x
y
∂

∂z

[ypz, zpx] = −�
2yz

∂2

∂z∂x
− �

2y
∂

∂x
+ �

2yz
∂2

∂x∂z
= −�

2y
∂

∂x

[ypz, zpx] = −�
2y

∂

∂x

[zpy, xpz] = −�
2z

∂

∂y
x

∂

∂z
+ �

2x
∂

∂z
z
∂

∂y

[zpy, xpz] = −�
2zx

∂2

∂y∂z
+ �

2x
∂

∂y
+ �

2xz
∂2

∂z∂y

[zpy, xpz] = �
2x

∂

∂y

[zpy, zpx] = −�
2z

∂

∂y
z
∂

∂x
+ �

2z
∂

∂x
z
∂

∂y

[zpy, zpx] = −�
2z2 ∂2

∂y∂x
+ �

2z2 ∂2

∂x∂y
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[zpy, zpx] = 0

[ypz, xpz] = −�
2y

∂

∂z
x

∂

∂z
+ �

2x
∂

∂z
y
∂

∂z

[ypz, xpz] = −�
2yx

∂2

∂z2
+ �

2xy
∂2

∂z2

[ypz, xpz] = 0

Now we can put these simplified expressions into Eq. (8), and we find:

[Lx, Ly] = �
2

(
x

∂

∂y
− y

∂

∂x

)
= i�

(
x

(
�

i

∂

∂y

)
− y

(
�

i

∂

∂x

))

[Lx, Ly] = i�(xpy − ypx)

[Lx, Ly] = i�Lz

(b),(c) The arguments used in (a) can be basically repeated, just changing the
identities of some of the variables. Or you can argue that since space is rotationally
invariant, if we rotate our coordinate system in such a way that x → y, y → z
and z → x, the same commutation relation holds with the appropriate change of
coordinate names. The basic principle is that for any (i, j, k) which are a cyclic
permutation of (x, y, z), we have:

[Li, Lj ] = i�Lk.

We know that in general if we interchange two operators in a commutator, the
result of the commutator acquires a negative sign. In other words, for any two
operators A,B:

[A,B] = −[B,A].

Thus if (i, j, k) are an anti-cyclic permutation of (x, y, z) (e.g., (y, x, z)), we have:

[Li, Lj ] = −i�Lk.

(d)

[L+, L−] = [Lx + iLy, Lx − iLy] = [Lx, Lx] + i[Ly, Lx]− i[Lx, Ly] + [Ly, Ly]

An operator always commutes with itself, so

[Lx, Lx] = 0, [Ly, Ly] = 0.

Thus we have
[L+, L−] = −2i[Lx, Ly] = −2i(i�Lz)

[L+, L−] = 2�Lz

(e)
[L−, Lz] = [Lx − iLy, Lz] = [Lx, Lz]− i[Ly, Lz]

[L−, Lz] = −i�Ly − i(i�Lx) = �(Lx − iLy)

[L−, Lz] = �L−

(f)
[L+, Lz] = [Lx + iLy, Lz] = [Lx, Lz] + i[Ly, Lz]

[L+, Lz] = −i�Ly + i(i�Lx) = −�(Lx + iLy)

[L+, Lz] = −�L+

(g) [
L2, Lz

]
=

[
L2

x, Lz

]
+

[
L2

y, Lz

]
+

[
L2

z, Lz

]
=

[
L2

x, Lz

]
+

[
L2

y, Lz

]
[
L2, Lz

]
= LxLxLz − LzLxLx + LyLyLz − LzLyLy

Now we employ a common trick in calculating commutation relations. We add
and subtract terms which allow us to substitute commutators we know into our
expression.
[
L2, Lz

]
= LxLxLz−LxLzLx+LxLzLx−LzLxLx+LyLyLz−LyLzLy+LyLzLy−LzLyLy

[
L2, Lz

]
= Lx[Lx, Lz] + [Lx, Lz]Lx + Ly[Ly, Lz] + [Ly, Lz]Ly

Maybe, if you are like me, when you first see this trick it seems quite clever. This
trick is used very often because of the potential non-commutativity of operators.
Suppose we have two operators A,B which don’t commute. If we have AB and
want to get BA for some reason, we can use

AB = AB −BA+BA = [A,B] +BA.

This is a very useful operator identity! Anyhow, continuing on with the math by
substituting in results from (a),(b) and (c) of this problem:

[
L2, Lz

]
= −i�LxLy − i�LyLx + i�LyLx + i�LxLy

[
L2, Lz

]
= 0
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This relation proves it is possible to find simultaneous eigenfunctions of both op-
erators. This is an important result, so it probably won’t hurt to see why this is
the case once more. Suppose we have operators A,B where [A,B] = 0. Consider
an eigenfunction of B, ψb, with eigenvalue λb. Is Aψb an eigenfunction of B? It
is, since

BAψb = ABψb = A(λbψb) = λb(Aψb).

As you can see, this result relies on the fact that A and B commute. Thus mea-
surement of one observable does not affect measurement of the other observable.
This shows that there is no fundamental quantum uncertainty in measurement of
observables which correspond to commuting operators. So we can find a function
ψab which is is an eigenfunction of both A and B with eigenvalues λa and λb, as
we do for L2 and Lz.

(h) We can use arguments analagous to those above to show that:
[
L2, Lx

]
= 0,

[
L2, Ly

]
= 0.

If you want to avoid the math, you can just use the isotropy of space to claim
that L2 should not preferentially commute with a particular direction in space. It
immediately follows that

[
L2, L±

]
= 0

(i),(j) First, let’s consider L+L− and L−L+:

L+L− = (Lx + iLy)(Lx − iLy) = L2
x + iLyLx − iLxLy + L2

y

L+L− = L2
x + L2

y − i[Lx, Ly] = L2
x + L2

y + �Lz

To go from L+L− to L−L+ we use the identity

L+L− = [L+, L−] + L−L+ = L−L+ + 2�Lz.

Since
L2 = L2

x + L2
y + L2

z

and
L+L− = L2

x + L2
y + �Lz, L−L+ = L2

x + L2
y − �Lz

we have:

L2 = L−L+ + L2
z + �Lz

L2 = L+L− + L2
z − �Lz

Problem 4

The spherical harmonic Ylm(θ, φ) is an eigenfunction of L2 with eigenvalue �
2l(l+1)

and also of Lz with eigenvalue �m. It is normalized so that∫
dΩY ∗

lm(θ, φ)Ylm(θ, φ) = 1.

(a)

Consider the integral:∫
dΩ(L+Yll)∗(L+Yll) =

∫
dΩY ∗

ll (L−L+)Yll

where we make use of the fact that:

(L+Yll)
∗ = Y ∗

llL
†
+ = Y ∗

llL−

From problem 3 parts (i),(j) we have:

L−L+ = L2 − L2
z − �Lz.

Conveniently, Yll is an eigenfunction of L2 and Lz with eigenvalues �
2l(l+ 1) and

�l respectively. Thus we obtain∫
dΩ(L+Yll)∗(L+Yll) = −

∫
dΩY ∗

ll �
2
(
l(l + 1)− l2 − l

)
Yll = 0.

Therefore, it must be that

L+Yll = 0

(b)

We can use quite similar methods to find C−(l,m). Consider the integral:∫
dΩ(L−Ylm)∗(L−Ylm) =

∫
dΩY ∗

lm(L+L−)Ylm

From problem 3 parts (i),(j) we have:

L+L− = L2 − L2
z + �Lz.

Ylm is an eigenfunction of L2 and Lz with eigenvalues �
2l(l+1) and �m respectively.

Thus we have the integral∫
dΩ(L−Ylm)∗(L−Ylm) =

∫
dΩY ∗

lm�
2
(
l(l + 1)−m2 +m

)
Ylm

Because the Ylm’s are orthonormal, we have that

November 18, 1999



Physics H7C Fall 1999 Solutions to Problem Set 10 Derek Kimball

|C−(l,m)|2 = �
2
(
l(l + 1)−m2 +m

)

Problem 5

(a)

Since the atom is in a state of definite projection mj = 5/2 of its total (spin +
orbital) angular momentum on the z axis, j ≥ 5/2. This follows from the fact that
possible values for mj range between +j and −j. What values of j are possible
for a one electron atom with orbital angular momentum l = 2? The values of j
range between l + s and |l − s| where s is the electron spin. Therefore, in general
j = 5/2, 3/2 are possible, but since the atom is in the mj = 5/2 state we know
j = 5/2.

(b)

Consider
J2 = (L+ S)2 = L2 + S2 + 2L · S.

Since the atom is in an eigenstate of J2, L2 and S2, we have that:

L · S =
�

2

2
(j(j + 1)− l(l + 1)− s(s+ 1)).

With j = 5/2, l = 2, and s = 1/2, we obtain L · S = �
2. Also,

√
〈L2〉〈S2〉 = �

2
√

l(l + 1) · s(s+ 1) = �
2 3√

2
.

So we find,

〈cos θ〉 =
√
2
3

Problem 6 Rohlf 7.27

The energies for the particle in the 3D box are given by:

En1,n2,n3 =
�

2π2

2mL2

(
n2

1 + n2
2 + 4n2

3

)
.

The following table shows the first 5 unique energies (in units of �
2π2

2mL2 ) and the
quantum numbers of the states that possess them.

n1 n2 n3 Energy
1 1 1 6
1 2 1 9
2 1 1 9
2 2 1 12
1 3 1 14
3 1 1 14
2 3 1 17
3 2 1 17

Problem 7 Rohlf 8.21

(a)

Of course, first we specify that we know l and s. The possible values for j are
j = l+ s, l+ s− 1, ..., |l − s|. We choose one particular value of j. Then there are
2j + 1 states with total angular momentum j. There are many ways to show this
result. You could start with a “stretched” state (mj = ±j) and use the raising or
lowering operator, for example. But if you simply note that mj can take on the
possible values

mj = j, j − 1, ...,−j + 1,−j

and count these states, we see immediately that the number of states is 2j + 1.

(b)

The quantum numbers of the n = 2 states of hydrogen in terms n, l, ml and ms

are shown in the following table:

n l ml ms

2 1 1 1/2
2 1 1 -1/2
2 1 0 1/2
2 1 0 -1/2
2 1 -1 1/2
2 1 -1 -1/2
2 0 0 1/2
2 0 0 -1/2

Note there are 8 states in total in the table.
The quantum numbers of the n = 2 states of hydrogen in terms n, l, j and mj are
shown in the following table:
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n l j mj

2 1 3/2 3/2
2 1 3/2 1/2
2 1 3/2 -1/2
2 1 3/2 -3/2
2 1 1/2 1/2
2 1 1/2 -1/2
2 0 1/2 1/2
2 0 1/2 -1/2

Here there are also 8 states. The system we are considering is described by an 8D
Hilbert space, so any complete, orthonormal set of eigenfunctions which span the
space must consist of 8 states.

(c)

Since Jz = Lz+Sz, for the statemj = 3/2, l = 1, ml = 1 andms = 1/2. This is the
“stretched” state, and we can readily convert from the n, l, j and mj basis to the
n, l, ml and ms basis by making the correspondence between the stretched states
and employing the raising and lowering operators. Note also that J± = L± + S±.
Such transformations are used quite often and are tabulated (these are the famed
Clebsch-Gordan coefficients).

(d)

If mj = 1/2, then we can have

(l,ml,ms) = (0, 0, 1/2)

(l,ml,ms) = (1, 0, 1/2)

(l,ml,ms) = (1, 1,−1/2).

Problem 8 Rohlf 8.25

(a)

The magnetic dipole moment )µ of a hydrogen atom, in the limit of a strong )B-field,
is given by:

)µ = − e

2m
(L+ 2S)

and the energy shift ∆E due to the external field is given by

∆E = −)µ · )B.

So we get energy shifts proportional to ml + 2ms.
For hydrogen in the n=3 state with a strong )B-field, we have the following possible
values for the angular momentum quantum numbers and energy shifts in units of
e�B/(2m):

ml ms ∆E
2 1/2 3
2 -1/2 1
1 1/2 2
1 -1/2 0
0 1/2 1
0 -1/2 -1
-1 1/2 0
-1 -1/2 -2
-2 1/2 -1
-2 -1/2 -3

(b)

In the absence of a magnetic field the energy separation ∆E0 of the 3p and 1s
states is

∆E0 = 13.6 eV − 13.6
9

eV = 12.1 eV.

The electric dipole transition selection rules demand that the difference in the
projection of the orbital angular momentum on the z-axis bewteen the initial and
final states of an atomic transition must obey

∆ml = 1, 0,−1.

So the energies of the photons Eγ can be

Eγ = 12.1 eV ± e�B

2m
, 12.1 eV.
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